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0. Introduction

In this paper we consider several aspects of quadratic programming problems. The
general problem is of the form

ming(y) =< Qy,y >+ <c,y >
yeQ

whereQ2 = {y € R" : Ay < b} is a bounded polyhedral sef) € R"*" is a
symmetric matrix,A € R™*", ¢ € R", b € R™, and< -,- > denotes the usual
inner product orR”. Quadratic programming is a very old and important problem
of mathematical programming. It has numerous applications in many diverse fields
of science and technology, and plays a key role in many nonlinear programming
methods.

On the other hand, a broad class of difficult combinatorial problems can be
formulated as nonconvex quadratic global minimization problems, for example:
integer programming, quadratic 0-1 programming, quadratic assignment problems,
bilinear programming, linear complementary problems, max-min problems (see
Pardalos and Rosen [13]).

In the nonconvex case, it has been shown that the linearly constrained prob-
lem is NP-complete (see Murty and Kabadi [11]). Moreover, to check only local
optimality in constrained nonconvex programming is NP-hard (see Pardalos and
Schnitger [14]). From a computational viewpoint, this means that, in the worst
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case, the computing time required to obtain a solution will grow exponentially
with the number of variables.

Traditional nonlinear programming methods usually obtain local solutions when
applied to indefinite quadratic problems. In many applications the global optimum
or a good approximation to global optimum is required. Recently some new ap-
proaches have been developed for finding the global optimum for this problem.
One such approach is given in [7]. Other earlier works include [10], which is based
on a search procedure using gradient projection, and a generalized Benders’ cut
procedure developed by Geoffrion [5] and used in [8]. Similarly Tuy [19] uses a
method based on Benders’ decomposition technique for the global minimization
of difference of two convex functions. More recent approaches are presented in [3,
6,12, 15, 16, 17].

In this paper we use branch and bound methods to obtain approximate solutions,
and Lagrangian duality is used to obtain lower bounds. This idea was introduced
by Falk in [4]. Ben-Tal et al. in [2], using a technique for reducing the duality
gap, incorporate this idea for solving bilinear constrained linear programs. The
description of this technique and a result showing that if the diameter of cover is
sufficiently small then the duality gap is arbitrarily small are presented in the first
section.

Next, in Section 2, we describe the general branch and bound method which is
implicit in this technique. Moreover, we prove some results concerning the beha-
vior of this method, such as its convergence and after a finite number of refinements
of cover the only sets that remain are those containing a global solution of the
problem.

In Section 3, we apply these results to linearly constrained quadratic problem.

Finally, in the last section, we describe the algorithm for quadratic problems
and we report preliminary computational results.

1. Reducing the Duality Gap

Our starting problem in this section is the constrained minimization program

(P)  a=min{fo(y): fi(y) <0,i e{l,...,m},y€ B}, )

where f; are continuous real-valued functions B for eachi € {0,1,... ,m},
and B is non-empty closed set iR". We suppose that the minimum in (P) is
attained.

It is well known that we may write (P) as

o= Eneig sup {fo(y) + Zuifi(y)} . (2)

m
ueRY i=1
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Moreover, the dual of program (P) is usually written as
(D)  B=supinf{fom)+Y uifiyg- 3)
ueR? YEB ]
and we always have the inequality
B <a, (4)

while the equality in (4) does not necessarily hold. The general objective of this
section is to develop an idea for reducing the duality @ap .
Let us consider a closed cover

A={R;:jelJ} (5)

of the closed seB, that is, for eachy € J, R; is a closed subset & andU,c,;R; =
B. Now, let us write (2) in the form

o = minmin sup L(y, u), (6)
J€J YER) yerm

whereL is the Lagrange function defined &t x R}, thatis,L(y, u) = fo(y) +
Z u; fi(y)-
i=1

From (6), we define thmtermediate dual prograrof program(P) as

y(A) = min sup inf L(y,u) (7)

J€J yerm YER;

and we assume that the infima in (7) are attained.
It is easy to see that

B<y(A) <a, 8)

that the left inequality in (8) is an equality when= { B} and that the right one is
an equality whem\ = {{y} : y € B}. The specific goal of this section is to prove
that there always exists a finite closed coveof B such that the gap — y (A) is
arbitrarily small.

We define the following closed subsetsRif

C={yeB: fi(y) <0,iefl ..., m}} 9)
and for anyy € B
Bs()={y € B:|y—yl <t} (10)

We moreover define the functiay from R’} x R, to R by

Ly(u,t) = yQ?;LTn L(y,u) (11)
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and by associating the sek5 in (7) with Bj;(¢), we define the functiorF; from
R; to R U {400} by
F5(t) = sup €5(u, 1). (12)
ueRY
We next give a sufficient condition for the continuity of the functignats = 0,
for eachy € C.

LEMMA 1.1. If the Lagrange functiorl. of program(P) defined in (6) is con-
tinuous onR" x R™, then for ally € C defined in (9) the functio; defined in
(12) is continuous at = 0. Moreover,F;(t) < +oo forall t € R,.

Proof. We firstly show the second assertion. Givee R, sincey € C we
have for allu € R

Ly(u,t) < L(y,u) < fo(y), (13)
thus

F5(t) < fo(y) < +oc. (14)
We now prove the continuity of functio; at¢ = 0. Sincey e C, we have
F;5(0) = fo(y), and the above inequality therefore implies

limsupF;(r) < F5(0),

t—0t
that is, the upper semi-continuity of functidf; atr = 0.
On the other hand, from the definition of functidi we have the inequality

Ly(u,t) < Fy(t) forall u e RY, t e Ry
and since, the functiof; is continuous o’} x R, (see for example Auslender
[1], page 54), we can write

F5(0) = sup £5(u, 0) < Iimg)rlf F;5(1)

t—

m
uelRY

that is, the lower semi-continuity of functiaofi; ats = 0. O

REMARK . Aweaker condition ensuring the same result is the lower semi-continuity
(on C) of the Lagrange functiorl(-, u) for eachu € R™, because this semi-
continuity implies the lower semi-continuity at= 0 of functions¢;(u, -) for all
u € R

In order to simplify notation, for any covex = {R; : j € J} of B we define
the quantities

diam(R;) =sup{lly — 'l : v,y € R},
8(A) = supdiam(R;). (15)
jeJ
We now can establish the principal result of this sectibriells us that the
duality gap can be made arbitrarily small if the closed cover is fine enough.
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THEOREM 1.2. If B is a compact set and if the Lagrange functibrof program
(P) defined in (6) is continuous dR" x R, then for alle > 0 there exists$ > 0
such that for any coven = {R; : j € J} of B verifyings(A) < 8, we have

OQa—-y)<s (16)

Proof. Givene > 0, from the above lemma we know that for eacte C the
function F), (defined in (12)) is continuous at= 0; there therefore existgy) > 0
such thatF, (0) — F,(t(y)) < . On the other hand, for eache B\ C there exists
t(z) > O such thatF, (¢ (z)) > o + 1 wherex is defined in (1).

We now consider the covgB, (¢ (y))}yec U{ B, (t(2))}.cp\c Of B. The compact-
ness ofB allows us to choose afinite numbengfe C, j € {1,... ,¢q},z; € B\C,
jelg+1 ..., ptsuchthath = {B, (t(y;) : j € {1, ...,q}} U{B(t(z))) :
jelg+1, ..., p}lisafinite cover ofB.

SinceF;(t(z;)) > a+1forallj € {g+1,..., p} we have that

A)= min F, (t(y;
re jefl,....q} }J( (y]))

Letj, € {1, ..., q} besuchthay (A) = Fy, (t(y),)). Sincea = milr; F,(0) we
_ Ve
can conclude that

a—y(A) < Fy, (0) = Fy (1(y;,) <é,

and this will be true for any cover having a subgetc B, (t(y;,)). O

2. A Branch and Bound Method

In this section we describe the simple Branch and Bound method implicit in The-
orem 1.2 of Section 1. Moreover, we establish its convergence in a finite number
of iterations.

In the method that we propodasanchingis the refinement oA andbounding
is the determination of lower and upper bounds for the valdefined in (1).

We start with defining\ = {B}. If we initially know a feasible poiny € B, i.e.
such thatf;(y) < Oforalli € {1,...,m}, we start with definingr(A) = fo(y),
otherwisex (A) = +o0.

Now, at each iteration we define new local refinementé agind we improve
the lower bound of the value by solving dual programs of the type

sup £(u), a7

m
uelR’

wherel(u) = mipL(y, u) andR is a set in the closed covey of B.
ye
Let us now describe precisely this Branch and Bound method:
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The BoundingAt the current iteration we have a closed cover= {R; : j € J}
of B. We solve the dual programs

yj = sup€;(u) forall jeJ, (18)

m
uelR’

wherel;(u) = mERn L(y,u). Moreover, for eacly € J we take some; € R;; if
YER;

fi(yj) <Oforalli e {1,...,m} we put

a(A) = minfa(A), fo(yj)} (19)

We definey; = mip yj- If a(A) — y; < e we stop the algorithm, otherwise we
je
branch.

The BranchingWe take the seR; defined by the bounding, and we design a closed
cover{R; : j € J'} of it. We define the new closed coveR; : j € J} of B by
redefining/ < J U J'\ {J}.

In the first section, in Theorem 1.2, we have established (under weak assump-
tions) that there always exists a finite closed coyenf B such that the gap
a — y (A) is arbitrarily small. We now wish to show that the above upper bounding
procedure has similarly properties, that is, there always exists a finite closed cover
A of B such that the quantity(A) — « is arbitrarily small. Of course, we must
append some additional assumptions on the data of our program (P) defined in (1).

THEOREM 2.1. If B is a compact set and

(i) the functionfy is continuous orR”,

(i) forall i € {1,...,m} the functionf; is convex finite oiR”",

(i) there existsyg € B such thatf;(yg) < Oforalli € {1, ..., m}.

Then, for alle > 0 there existss > 0 such that for any closed covey = {R; :
J € J} of B verifying$(A) < §, we have

a(A) —a <L e (20)

Proof. Let y* € C (defined in (9)) such thaty(y*) = «, that is, ¥ is a global
solution of problem (P) (defined in (1)).

From assumptions i), ii) and iii), it is easy to see that there exist C and
8" > 0 such that the se;(5’) is a subset of the interior @ and

fo(y) — fo(y™) < eforall y € B;(8).

We now take a closed covey = {R; : j € J} of B such that there existse J
verifiying R; C Bj(8'). Then, sincefo(y*) = o, we can conclude that

a(A) —a <maxfo(y) —a < max fo(y) —a <e,
VER; yeB;(8")
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and this will be true for any cover having a subfetC Bj;(8'). O

Consequently, we now can derive a result ensuring the convergence of the above
method in a finite number of iterations. Of course, we must append some additional
assumptions on The Branching step. In view of a more implementable condition
see the remark following the theorem below.

THEOREM 2.2. Suppose, in addition to assumptions of Theorem 2.1 above, that
The Branching step is a process such that the diam&tarn of the closed cover

A of B converges to zero. Then, the Branch and Bound method described above
converges in a finite number of iterations. That is to say, we obtain a painC

such that

fo(y) —a <e. (21)

Proof. It is a direct consequence of Theorems 1.2 and 2.1 above. a

REMARK . From proofs of Theorems 1.2 and 2.1 we see that the condition as-
sumed for the Branching step can be weakened. In fact, it is sufficient that there
exists O0< n < 1 such that, if the seR; should be branched, then the new closed
cover{R; : j € J'} of it, verifies

diam(R;) < n diam(R;) forall j € J'. (22)

On the other hand, the performance of this method is that when one makes the
Bound step, all the subsefs; for which y; > «(A) + ¢ will never be considered
in the branch. In fact, we will only make local refinements of the closed caver
Of course, this is the philosophy of all Branch and Bound methods.

To end this section, we prove a result that tells us that, after a finite number of
iterations, the only sets that remain are those containing an approximated global
solution of problem.

PROPOSITION 2.3.LetA = {R; : j € J} be aclosed cover @& and letR; € A
be such that

RiN{y* eC: fo(y" ) =a} = 0. (23)

If R; is a compact set and
(i) if R; N C =0, thenR; will be leaved out after a finite number of refinements
of A.
(i) if R; N C # ¢, then we will have after a finite number of refinementa dhe
following inequality

supminL(y,u) >« forall R; C R;. (24)

ueR™ YER;



84 OSCAR BARRIENTOS, RAFAEL CORREA

Proof. i) Given n € R, for all z € R; there existst(z) > 0 such that
F.(t(2)) > 1.
From the compactness of the g&t, we can choose a finite numbergfe R;,
kef{l, ... g}suchthafB, (1(zx)/3): k€ {1,...,q}} cOverr;.
1

We sets = 3 . {Tin }t(zk). Let A’ be a closed cover a?; such that
e{l,....q

diam(R;) <8 forall Ry e A

Since for allR;; € A’ there exists € {1, ..., g} verifying R; C B, (t(zx)),
we have

sup min L(y,u) > sup min L(y,u) > n.
ueR? YER ueR? YEBz (1(z1))

Therefore, to leave ouR; it is sufficient to choose) greater thanx + ¢ (for
examplen = a(A) + 2¢).
(i) We define the auxiliary problem (Pas follows:

(P)  m=min{fo(y): fi(y) <0,i€{l,... . m},y € Rj}.

From the compactness of the g&t and equality (23), we hawe < . Moreover,
sinceR; N C # @, we then havey < 4-o0.

We now apply Theorem 1.2 to problem (P’) with= %(77 — a) > 0; then there
existsé’ > 0 such that for any closed covar of R; verifying

diamR;) <8 forall R;e A

we have:n — min supminL(y,u) < e. But, that is equivalent t(%(n +a) <
RjeA  eRrrn yER;

min sup min L(y, u).

RjeA” yerm YER,

Therefore, for allR; € A" we geta < sup min L(y, u). a
ueR” YER;

3. Global Minimization of Linearly Constrained Quadratic Functions

In this section we consider the linearly constrained quadratic problem

(QP) migg}gb’(x) =< 0Ox,x >+ <, x>, (25)

whereQ?’ = {x € R" : A’x < b’} is a bounded polyhedral sef) € R"™" is a
symmetric matrix andd’ € R™*", " € R™, ¢/ € R", and< -,- > denotes the
usual inner product oR”.

First of all, we use either the so-called Gauss’ method (diagonalization by com-
pletion of the squares) or the diagonalizing procedure of Rosen et al. [16]. It is used
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to obtain an equivalent problem with separable cost quadratic functions, and in this
way, we will be able to use the method described in the above section, since we
will explicitly compute the value functios defined in (17).

Therefore, we can suppose that the quadratic problem to solve has the following
structure

(QP) ngslznﬁb(y) =< Dya y>+<cy>, (26)

whereQ2 = {y € R" : Ay < b} is a bounded polyhedral se) € R"*" is a
diagonal matrix andt € R™*"; b € R™ andc € R".

On the other hand, from the compactness of the&seate can suppose that we
know a rectangular s&8 = {y € R : b < y < b} such that2 c B; indeed if we
define

=1

b, = miny; b; = maxy, foralli € {1,... ,n}, (27)
yeQ yeQ

B turns out to be the rectangular set of minimum volume that confains

We continue by using the Branch and Bound method described in Section 2.
From now on, due to the separability of the quadratic cost function, we consider
finite coversA = {R; : j € J} of B such thatR; is a rectangular set for all
j € J. Branching refers to the partition of the feasible domain by bisection in
certain directions, and bounding refers to the determination of lower and upper
bounds for the global optimum value.

The BoundingAt the current iteration we have a finite rectangular caves {R; :
J € J} of B. We solve the dual programs

yj = sup ;) forall j e J, (28)

uelRY
wherel; (u) = an L(y,u)andL(y,u) = ¢(y)+ <u, Ay —b >.
YER;
It is easy to see that

Li(u) =— <u, b>+2 mln {dyl + zi(u)y;}, (29)

yielli,

wherez(u) = ¢ + ATu, D = diag(d;) andR; = ]_[[l,, L;]

For obtaining upper bounds we systematlcally test the middle point of the rect-
angular seR; = ]_[[ll, L], thatis, ify; = 2(l + L) € R; verifiesAy; — b < 0,

i=1
then we set

a(A) = min{g(y;), a(A)} (30)



86 OSCAR BARRIENTOS, RAFAEL CORREA

On the other hand, while we solve the programs (28), it is necessary to de-
termine the value of(u), that is, the pointy’ € R; such thatt(u) = ¢(y')+
< u, Ay’ — b >, we then can test if this’ € R; is feasible or not.

REMARK . Of course, we could obtain a feasible point R; (if there exists)
by solving the problem

(LP) minfa(y) : y € Rj, y € Q} (31)

where the functiork : R™ — R is a linear (or piecewise linear) underestimation
of ¢ on R;. But, it introduces an additional computational cost.

The BranchingWe take the seR; defined by the bounding, that i&; verifies

Y = mip yj. We bisectR; on its largest face, that is, R; = [[[l;, L;], we set
J€ i=1
i, €{1,...,n}suchthat

Ly, —1,

— max }(L,- —1); (32)

ie{l,...,n

we then define the new cover’ of B by

A= A U{RY, R%}\ {R;}, (33)
where
. + L. " . +L; n
1 _ . lo lo . . 2 _ lo lo . . .
RY = [h, =1 H[z Lil, R®=["——" L] H[z Ll
i#io iio

(34)

To end this section we establish a result showing that, first the above branching
procedure verifies the remark following Theorem 2.2; second, giving two ways to
leave out an elememR; of coverA of setB.

PROPOSITION 3.1.LetA = {R; : j € J} be arectangular cover of the sBt

(i) If we suppose that the s&; = [[[/;, L;] € A must be branched, then the set
=1

R* k € {1, 2} defined in (34) verifies the inequality

diam(R") < (4"47_3)1/2diam(1ef). (35)
71

(i) Every setR; e A such thaty; > a(A) + ¢ may be left out since it does not
contain global solutions of problefQ P).
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(iii) If there existk, € {1, ..., m} such that the seR; = [[[/;, L;] € A verifies
i=1

Z min{liaf", Liaf"} > bkﬂ, (36)
i=1

wherea is thek,-th row of matrixA andby, is thek,-th component of vector
b € R™. Then, the seR; may be left out since it does not contain feasible
points of problem(Q P).

Proof. It is a simple exercise. a

4. The Algorithm and the Computational Results

Based on the above theorical results, we now present the computational algorithm.

ALGORITHM. The elements of coveA are stored (in a growing order with
respect to their lower bounds) in a two way-linked list
1. Initialization

1.1. We use either Gauss’ method or the diagonalizing procedure of Rosen et
al. [16] to obtain an equivalent problem with a separable quadratic cost
function.

1.2. We solve the 2linear programming problems

b, = QIS Yis b; = TE%XM- (37)
1.3. We define

n

A = {B}whereB = []I[b;, b1,
i=1
a(A) = {Tin }{¢(Xi),¢(yi)} wherey , y; are (respectively) the

solutions of linear programs in (37),
y = sup £(u) with ¢ defined in (28),
ueRY
L < {B}.
2. We bisect the first element (along its largest face) of lliswe obtain two
elementsk! and R? (defined in (34)).
3. For eachk € {1, 2}, we test ifR* contains feasible points (see (36)). If it is the

case we computg = sup £(u), and the middle poing* of RX.
uelRY

If ¥ € R¥is a feasible point then

a(A) < minfa(A), ¢} (38)
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4. We delete the first element of the listand those elements &f such that their
lower bound is greater than(A) + .

5. For eachk € {1, 2}, if necessary, we inseR* in the listL.

6. If a(A) — ¢ is greater than the lower bound of the first elemenL dhen we
go to 2, otherwise we have an approximate solutibne 2 of problem (QP)
within ¢, that is,¢ (y*) — a < &.

REMARK . The dual problems

y = supminL(y, u),

uelRY ye
where L is defined in (28), are not solved in an exact form. For searching an
underestimating off we use the fact that is a concave (continuous) piecewise
n
quadratic function whem is a rectangular set, that i8, = [[[/;, L;]; andD is a

i=1
diagonal matrix. In fact, we recall that

n

twy==<ub>+)  min {dy?+ .z},
l:l i 11

wherez(u) = ¢ + ATu and D = diag(d;).
If d; > 0and ] < 4% < L;, we then have the equality

(ci+ <u,a >)2
4, ’

min {d;y?>+ z;(u)y;} = —
yiE[li,Li]{ it (w)yi)
wherea’ € R™ is thei-th column of matrixA. It is then a quadratic function on a
polyhedral domain ifR™.
Otherwise, we have the equality

JMin {d;y? + 2@y} = min{d; 17 + 2@l diLF + 2@ Li).
It is then a piecewise linear function @f".
Next, we make no more than 30 iterations with a Uzawa’s method. But gince
is a piecewise quadratic function, we use as ascent direction the variant of Polak
and Ribiére. Finally, the line search is realized with a bisection method. For details
on these methods see Minoux [9], Part I, chapters 3 (p. 75), 4 (p. 110) and 6 (p.
253).

Computational Results

The computational results presented below were all obtained using a DEC ALPHA
3000/300L. The DEC ALPHA has a DECchip 21064 RISC-style microprocessor,
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Table I.

n=100 n=300 n=500 n»=1000 »=2000 ~»=3000 ~r=4000
CPU time (secs.) 0.0 0.1 0.3 15 8.2 17.6 32.0

with a 256 KB secondary cache, a SIMM memory of 128 MB and a CPU speed of
100 Mhz.

TEST PROBLEM1

It is the following concave separable quadratic problem:

i 1
min{ —Z|:xi2+§xii|: —10<x<£10,ie{1,... ,n} .
i=1

It is easy to see that this problem h&sKarush-Kuhn-Tucker points,”docal
minima points and only one global solution.

For every problems the number of iterations was 1 and the number of cost
function evaluations was 5.

Table 1 summarizes the computational results wita 5- 1077,

TEST PROBLEM2

It is the following integer 0-1 linear problem:

maX{ZCiyi : Zyi <b, yie{0,1}, i efl,... ,n}},
i=1 i—1

wherec; = 1.0foralli e {1,... ,N};¢; = —10foralli e {N +1,...,n};and
b=maxXq : q € N,qg < N/2.0}. It is easy to see that the number of solutions of
this problem is greater tharf 2

We solve the following concave separable quadratic problem:

—min{ Y 0yi—y) —civil: Y i <b 0<y <L ie{l... ,n}},
i=1 i=1

wheref is a constant positive. It is not difficult to see that if we wish to obtain
one solution to distance less or equal thiat- O of the integer 0-1 solution, it is
sufficient tha® verify

o> __°
T e(l—¢)
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Table II.
n=1000 »n=2000 »n=3000

N time time time fn dual iter node
100 6.0 171 31.0 354 1057 75 76
200 115 311 51.5 755 2457 175 176
300 13.1 31.8 50.3 652 2100 150 151
400 225 56.1 90.6 1555 5257 375 376
500 21.1 52.8 75.2 1052 3500 250 251
600 25.2 62.2 90.1 1252 4200 300 301
700 39.0 84.4 149.0 10885 17631 1258 1259
800 445 107.7 168.6 12085 19844 1416 1417
900 37.3 93.6 123.1 1853 6300 450 451

1000 41.4 99.9 136.3 2052 7000 500 501

1500 — 128.6 207.6 3053 10500 750 751

2000 — 174.7 259.0 4055 14002 1000 1001

Note: time = CPU time (secs), fn = maximum number of cost function evalu-
ations, dual = maximum number of dual function evaluations, iter = maximum
number of iterations, node = maximum number of stored nodes.

wheree > 0 is the threshold for the approximated solution.
Table 2 summarizes the computational results wita 10° ande = 5- 10~".

TEST PROBLEM3

It is the following concave separable quadratic problem:

n J
min{—zyfz dovi<jojeld....n)yi=20ie{l...  n
i=1 i=1

This problem is taken from Strekalovskii [18]. In that paper the CPU time
reported to solve the above problem is 40 min for 100 variables.

It is important to note that the diameter of the feasible set and the norm of the
global solution are equals to the dimension of the problem.

Table 3 below summarizes the computational results with5 - 107

TEST PROBLEM4
It is the nonconvex separable quadratic problem:

k+1

k
. 1 - \2 1 =\2
rgygr;{ —E; Ai(yi — V)T + > Z A=Y s

i=k+1
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Table 111,

n time fn dual iter node

100 03 26 46
200 3.8 80 107
300 77 63 84
400 125 57 71
500 301 71 102
600 559 100 133
700 330 28 55
800 748 78 93
900 778 50 70
1000 1252 63 95
1500 346.4 87 103
2000 6479 76 106

N R NP RPREPRANWRNDNDPR
NRNPPRPRPONDPRPRNNDR

Note: See note Table 2.

whereQ = {y e R": Ay <b, y=>0},n=k+I[, A= (a;;) € R™",

b € R™. The dataa;; € [0,9], b; € [0,n] andy;, A; € [0, 99] are randomly
generated integers. We solved 17 problems (5 for each dimension), the smallest of
dimension 60 (10 concave and 50 convex variables) and the largest of dimension
330 (30 concave and 300 convex variables). The average CPU time was 2.6 secs
for n=60, to 723.6 secs far=170, problem.

The PGR column contains the CPU times (obtained using a Cray 1S supercom-
puter) given in Pardalos et al. [12] to solve problems of the same dimension and
data generated similarly.

Table 4 below summarizes the computational results wigh5 - 1073,

5. Concluding Remarks

In our approach, we note that the main computational effort required to obtain good
approximations of the global solution of the quadratic problem depends mainly on
our capacity to store the information, that is, on our capacity to store the cover
generated by the branching; and on our efficiency to calculate the dual function
values.

The techniques developed above can be extended to the solution of:
(1) 5.1 Large scale nonconvex quadratic problems of the form

min{< Qy,y >+ <c¢,y>+<d,x >: (y,x) € Q},
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Table IV.

k I n min  max aver fn dual iter node PGR

10 50 30 0.0 9.2 2.6 938 2570 49 4 54.6
10 50 20 2.2 89.4 47.1 24534 83217 1777 61 56.6
10 60 20 0.1 64.6 14.1 17738 61018 2594 51 154.0
10 60 30 0.9 67.4 15.5 16803 39431 1460 87 48.5
10 70 30 2.1 2745 115.7 46545 158750 3556 139 80.5
10 80 40 0.2 21.5 7.1 2471 7204 132 4 77.8
10 100 50 0.1 19.3 6.6 1442 4696 93 4 89.5
20 40 20 0.0 66.0 21.7 16578 67439 2528 85 97.5
20 50 20 0.0 30.7 6.2 14623 27085 1330 27 305.5

20 60 30 0.0 215.6 98.6 32393 129571 2381 113 208.8
20 70 30 0.2 479.3 123.8 186805 171493 22818 554 199.0
40 80 40 01 273.1 86.4 27248 73525 4650 68 457.0
20 150 30 65 7259 1773 41625 154246 3358 31 325.0
20 150 50 0.5 22248 723.6 90718 312297 8361 175 436.0
30 150 50 0.4 11178 327.5 53096 143617 6166 59 1000.0
20 200 50 04 363.2 1540 13381 38141 1096 16 178.0
30 300 50 9.6 1889.0 452.9 57902 108567 7393 77 1500.0

Note: k = number of concave variables, | = number of convex variables, m = number of constraints,
min = minimum CPU time (secs), max = maximum CPU time (secs), aver = average CPU time
(secs), fn = maximum number of cost function evaluations, dual = maximum number of dual function
evaluations, iter = maximum number of iterations, node = maximum number of stored nodes.

whereQ = {(y,x) € R"* : Ay + Bx < b} is a bounded polyhedral set,
Q € R™" is a symmetric matrixy € R* andx € R*. Herek may be much
larger tham.

(2) 5.2 Integer 0-1 (or mixed) nonconvex quadratic problems of the form
min{< Qy,y >+ <c¢,y>: yeQ, y; €{0,1},i € I},

whereQ = {y € R" : Ay < b} is a bounded polyhedral sad € R"*" is a
symmetric matrix and c {1, ... ,n}.
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