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0. Introduction

In this paper we consider several aspects of quadratic programming problems. The
general problem is of the form

min
y∈� φ(y) =< Qy, y > + < c, y >

where� = {y ∈ Rn : Ay 6 b} is a bounded polyhedral set,Q ∈ Rn×n is a
symmetric matrix,A ∈ Rm×n, c ∈ Rn, b ∈ Rm, and< ·, · > denotes the usual
inner product onRn. Quadratic programming is a very old and important problem
of mathematical programming. It has numerous applications in many diverse fields
of science and technology, and plays a key role in many nonlinear programming
methods.

On the other hand, a broad class of difficult combinatorial problems can be
formulated as nonconvex quadratic global minimization problems, for example:
integer programming, quadratic 0-1 programming, quadratic assignment problems,
bilinear programming, linear complementary problems, max-min problems (see
Pardalos and Rosen [13]).

In the nonconvex case, it has been shown that the linearly constrained prob-
lem is NP-complete (see Murty and Kabadi [11]). Moreover, to check only local
optimality in constrained nonconvex programming is NP-hard (see Pardalos and
Schnitger [14]). From a computational viewpoint, this means that, in the worst
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case, the computing time required to obtain a solution will grow exponentially
with the number of variables.

Traditional nonlinear programming methods usually obtain local solutions when
applied to indefinite quadratic problems. In many applications the global optimum
or a good approximation to global optimum is required. Recently some new ap-
proaches have been developed for finding the global optimum for this problem.
One such approach is given in [7]. Other earlier works include [10], which is based
on a search procedure using gradient projection, and a generalized Benders’ cut
procedure developed by Geoffrion [5] and used in [8]. Similarly Tuy [19] uses a
method based on Benders’ decomposition technique for the global minimization
of difference of two convex functions. More recent approaches are presented in [3,
6, 12, 15, 16, 17].

In this paper we use branch and bound methods to obtain approximate solutions,
and Lagrangian duality is used to obtain lower bounds. This idea was introduced
by Falk in [4]. Ben-Tal et al. in [2], using a technique for reducing the duality
gap, incorporate this idea for solving bilinear constrained linear programs. The
description of this technique and a result showing that if the diameter of cover is
sufficiently small then the duality gap is arbitrarily small are presented in the first
section.

Next, in Section 2, we describe the general branch and bound method which is
implicit in this technique. Moreover, we prove some results concerning the beha-
vior of this method, such as its convergence and after a finite number of refinements
of cover the only sets that remain are those containing a global solution of the
problem.

In Section 3, we apply these results to linearly constrained quadratic problem.
Finally, in the last section, we describe the algorithm for quadratic problems

and we report preliminary computational results.

1. Reducing the Duality Gap

Our starting problem in this section is the constrained minimization program

(P) α = min{f0(y) : fi(y) 6 0, i ∈ {1, . . . , m}, y ∈ B}, (1)

wherefi are continuous real-valued functions onRn for eachi ∈ {0,1, . . . , m},
andB is non-empty closed set inRn. We suppose that the minimum in (P) is
attained.

It is well known that we may write (P) as

α = min
y∈B

sup
u∈Rm+

{
f0(y)+

m∑
i=1

uifi(y)

}
. (2)
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Moreover, the dual of program (P) is usually written as

(D) β = sup
u∈Rm+

inf
y∈B

{
f0(y)+

m∑
i=1

uifi(y)

}
, (3)

and we always have the inequality

β 6 α, (4)

while the equality in (4) does not necessarily hold. The general objective of this
section is to develop an idea for reducing the duality gapα − β.

Let us consider a closed cover

3 = {Rj : j ∈ J } (5)

of the closed setB, that is, for eachj ∈ J ,Rj is a closed subset ofB and∪j∈JRj =
B. Now, let us write (2) in the form

α = min
j∈J min

y∈Rj
sup
u∈Rm+

L(y, u), (6)

whereL is the Lagrange function defined onRn × Rm+, that is,L(y, u) = f0(y) +
m∑
i=1
uifi(y).

From (6), we define theintermediate dual programof program(P ) as

γ (3) = min
j∈J sup

u∈Rm+
inf
y∈Rj

L(y, u) (7)

and we assume that the infima in (7) are attained.
It is easy to see that

β 6 γ (3) 6 α, (8)

that the left inequality in (8) is an equality when3 = {B} and that the right one is
an equality when3 = {{y} : y ∈ B}. The specific goal of this section is to prove
that there always exists a finite closed cover3 ofB such that the gapα − γ (3) is
arbitrarily small.

We define the following closed subsets ofB:

C = {y ∈ B : fi(y) 6 0, i ∈ {1, . . . , m}} (9)

and for anyȳ ∈ B
Bȳ(t) = {y ∈ B : ‖ȳ − y‖ 6 t}. (10)

We moreover define the function̄̀y fromRm+ × R+ toR by

`ȳ(u, t) = min
y∈Bȳ(t)

L(y, u) (11)
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and by associating the setsRj in (7) with Bȳ(t), we define the functionFȳ from
R+ toR ∪ {+∞} by

Fȳ(t) = sup
u∈Rm+

`ȳ(u, t). (12)

We next give a sufficient condition for the continuity of the functionFȳ at t = 0,
for eachȳ ∈ C.

LEMMA 1.1. If the Lagrange functionL of program(P ) defined in (6) is con-
tinuous onRn × Rm+, then for all ȳ ∈ C defined in (9) the functionFȳ defined in
(12) is continuous att = 0. Moreover,Fȳ(t) < +∞ for all t ∈ R+.

Proof. We firstly show the second assertion. Givent ∈ R+, sinceȳ ∈ C we
have for allu ∈ Rm+

`ȳ(u, t) 6 L(ȳ, u) 6 f0(ȳ), (13)

thus

Fȳ(t) 6 f0(ȳ) < +∞. (14)

We now prove the continuity of functionFȳ at t = 0. Sinceȳ ∈ C, we have
Fȳ(0) = f0(ȳ), and the above inequality therefore implies

lim sup
t→0+

Fȳ(t) 6 Fȳ(0),

that is, the upper semi-continuity of functionFȳ at t = 0.
On the other hand, from the definition of functionFȳ we have the inequality

`ȳ(u, t) 6 Fȳ(t) for all u ∈ Rm+, t ∈ R+
and since, the functioǹȳ is continuous onRm+ × R+ (see for example Auslender
[1], page 54), we can write

Fȳ(0) = sup
u∈Rm+

`ȳ(u,0) 6 lim inf
t→0+

Fȳ(t)

that is, the lower semi-continuity of functionFȳ at t = 0. 2
REMARK . A weaker condition ensuring the same result is the lower semi-continuity
(on C) of the Lagrange functionL(·, u) for eachu ∈ Rm+, because this semi-
continuity implies the lower semi-continuity att = 0 of functions`ȳ(u, ·) for all
u ∈ Rm+.

In order to simplify notation, for any cover3 = {Rj : j ∈ J } of B we define
the quantities

diam(Rj ) = sup{‖y − y′‖ : y, y′ ∈ Rj },
δ(3) = sup

j∈J
diam(Rj ). (15)

We now can establish the principal result of this section.It tells us that the
duality gap can be made arbitrarily small if the closed cover is fine enough.
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THEOREM 1.2. If B is a compact set and if the Lagrange functionL of program
(P ) defined in (6) is continuous onRn × Rm+, then for allε > 0 there existsδ > 0
such that for any cover3 = {Rj : j ∈ J } of B verifyingδ(3) 6 δ, we have

(06) α − γ (3) 6 ε (16)

Proof. Givenε > 0, from the above lemma we know that for eachy ∈ C the
functionFy (defined in (12)) is continuous att = 0; there therefore existst (y) > 0
such thatFy(0)−Fy(t (y)) 6 ε. On the other hand, for eachz ∈ B \C there exists
t (z) > 0 such thatFz(t (z)) > α + 1 whereα is defined in (1).

We now consider the cover{By(t (y))}y∈C∪{Bz(t (z))}z∈B\C of B. The compact-
ness ofB allows us to choose a finite number ofyj ∈ C, j ∈ {1, . . . , q}, zj ∈ B\C,
j ∈ {q + 1, . . . , p} such that3 = {Byj (t (yj )) : j ∈ {1, . . . , q}} ∪ {Bzj (t (zj )) :
j ∈ {q + 1, . . . , p}} is a finite cover ofB.

SinceFzj (t (zj )) > α + 1 for all j ∈ {q + 1, . . . , p} we have that

γ (3) = min
j∈{1,... ,q}

Fyj (t (yj ))

Let jo ∈ {1, . . . , q} be such thatγ (3) = Fyjo (t (yjo)). Sinceα = min
y∈B Fy(0) we

can conclude that

α − γ (3) 6 Fyjo (0)− Fyjo (t (yjo)) 6 ε,
and this will be true for any cover having a subsetRj ⊂ Byjo (t (yjo)). 2

2. A Branch and Bound Method

In this section we describe the simple Branch and Bound method implicit in The-
orem 1.2 of Section 1. Moreover, we establish its convergence in a finite number
of iterations.

In the method that we propose,branchingis the refinement of3 andbounding
is the determination of lower and upper bounds for the valueα defined in (1).

We start with defining3 = {B}. If we initially know a feasible point̄y ∈ B, i.e.
such thatfi(ȳ) 6 0 for all i ∈ {1, . . . , m}, we start with definingα(3) = f0(ȳ),
otherwiseα(3) = +∞.

Now, at each iteration we define new local refinements of3 and we improve
the lower bound of the valueα by solving dual programs of the type

sup
u∈Rm+

`(u), (17)

where`(u) = min
y∈R

L(y, u) andR is a set in the closed cover3 of B.

Let us now describe precisely this Branch and Bound method:
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The Bounding.At the current iteration we have a closed cover3 = {Rj : j ∈ J }
of B. We solve the dual programs

γj = sup
u∈Rm+

`j(u) for all j ∈ J, (18)

where`j(u) = min
y∈Rj

L(y, u). Moreover, for eachj ∈ J we take someyj ∈ Rj ; if

fi(yj ) 6 0 for all i ∈ {1, . . . , m} we put

α(3) = min{α(3), f0(yj )} (19)

We defineγ̂ = min
j∈J

γj . If α(3)− γ̂ 6 ε we stop the algorithm, otherwise we

branch.

The Branching.We take the setR̂ defined by the bounding, and we design a closed
cover{Rj : j ∈ J ′} of it. We define the new closed cover{Rj : j ∈ J } of B by
redefiningJ ← J ∪ J ′ \ {̂}.

In the first section, in Theorem 1.2, we have established (under weak assump-
tions) that there always exists a finite closed cover3 of B such that the gap
α− γ (3) is arbitrarily small. We now wish to show that the above upper bounding
procedure has similarly properties, that is, there always exists a finite closed cover
3 of B such that the quantityα(3) − α is arbitrarily small. Of course, we must
append some additional assumptions on the data of our program (P) defined in (1).

THEOREM 2.1. If B is a compact set and
(i) the functionf0 is continuous onRn,
(ii) for all i ∈ {1, . . . , m} the functionfi is convex finite onRn,
(iii) there existsy0 ∈ B such thatfi(y0) < 0 for all i ∈ {1, . . . , m}.
Then, for allε > 0 there existsδ > 0 such that for any closed cover3 = {Rj :
j ∈ J } ofB verifyingδ(3) 6 δ, we have

α(3)− α 6 ε. (20)

Proof. Let y∗ ∈ C (defined in (9)) such thatf0(y
∗) = α, that is, y∗ is a global

solution of problem (P) (defined in (1)).
From assumptions i), ii) and iii), it is easy to see that there existỹ ∈ C and

δ′ > 0 such that the setBỹ(δ′) is a subset of the interior ofC and

f0(y)− f0(y
∗) 6 ε for all y ∈ Bỹ(δ′).

We now take a closed cover3 = {Rj : j ∈ J } of B such that there existsj ∈ J
verifiying Rj ⊂ Bỹ(δ′). Then, sincef0(y

∗) = α, we can conclude that

α(3)− α 6 max
y∈Rj

f0(y)− α 6 max
y∈Bỹ(δ′)

f0(y)− α 6 ε,
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and this will be true for any cover having a subsetRj ⊂ Bỹ(δ′). 2
Consequently, we now can derive a result ensuring the convergence of the above

method in a finite number of iterations. Of course, we must append some additional
assumptions on The Branching step. In view of a more implementable condition
see the remark following the theorem below.

THEOREM 2.2. Suppose, in addition to assumptions of Theorem 2.1 above, that
The Branching step is a process such that the diameterδ(3) of the closed cover
3 of B converges to zero. Then, the Branch and Bound method described above
converges in a finite number of iterations. That is to say, we obtain a pointy ∈ C
such that

f0(y)− α 6 ε. (21)

Proof. It is a direct consequence of Theorems 1.2 and 2.1 above. 2
REMARK . From proofs of Theorems 1.2 and 2.1 we see that the condition as-
sumed for the Branching step can be weakened. In fact, it is sufficient that there
exists 0< η < 1 such that, if the setR̂ should be branched, then the new closed
cover{Rj : j ∈ J ′} of it, verifies

diam(Rj ) 6 η diam(R̂ ) for all j ∈ J ′. (22)

On the other hand, the performance of this method is that when one makes the
Bound step, all the subsetsRj for which γj > α(3) + ε will never be considered
in the branch. In fact, we will only make local refinements of the closed cover3.
Of course, this is the philosophy of all Branch and Bound methods.

To end this section, we prove a result that tells us that, after a finite number of
iterations, the only sets that remain are those containing an approximated global
solution of problem.

PROPOSITION 2.3.Let3 = {Rj : j ∈ J } be a closed cover ofB and letR̂ ∈ 3
be such that

R̂ ∩ { y∗ ∈ C : f0(y
∗) = α } = ∅. (23)

If R̂ is a compact set and
(i) if R̂ ∩ C = ∅, thenR̂ will be leaved out after a finite number of refinements

of3.
(ii) if R̂ ∩ C 6= ∅, then we will have after a finite number of refinements of3 the

following inequality

sup
u∈Rm+

min
y∈Rj

L(y, u) > α for all Rj ⊂ R̂ . (24)
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Proof. i) Given η ∈ R, for all z ∈ R̂ there existst (z) > 0 such that
Fz(t (z)) > η.

From the compactness of the setR̂ , we can choose a finite number ofzk ∈ R̂ ,
k ∈ {1, . . . , q} such that{Bzk(t (zk)/3) : k ∈ {1, . . . , q}} coverR̂ .

We setδ = 1
3 min
k∈{1,... ,q}

t (zk). Let3′ be a closed cover ofR̂ such that

diam(Rj ′) 6 δ for all Rj ′ ∈ 3′.
Since for allRj ′ ∈ 3′ there existsk ∈ {1, . . . , q} verifying Rj ′ ⊂ Bzk (t (zk)),

we have

sup
u∈Rm+

min
y∈Rj ′

L(y, u) > sup
u∈Rm+

min
y∈Bzk (t (zk))

L(y, u) > η.

Therefore, to leave outR̂ it is sufficient to chooseη greater thanα + ε (for
exampleη = α(3)+ 2ε).

(ii) We define the auxiliary problem (P′) as follows:

(P’) η = min{f0(y) : fi(y) 6 0, i ∈ {1, . . . , m}, y ∈ R̂ }.
From the compactness of the setR̂ and equality (23), we haveα < η. Moreover,
sinceR̂ ∩ C 6= ∅, we then haveη < +∞.

We now apply Theorem 1.2 to problem (P’) withε = 1
2(η − α) > 0; then there

existsδ′ > 0 such that for any closed cover3′ of R̂ verifying

diam(Rj ) 6 δ′ for all Rj ∈ 3′,
we have:η − min

Rj∈3′
sup
u∈Rm+

min
y∈Rj

L(y, u) 6 ε. But, that is equivalent to12(η + α) 6
min
Rj∈3′

sup
u∈Rm+

min
y∈Rj

L(y, u).

Therefore, for allRj ∈ 3′ we getα < sup
u∈Rm+

min
y∈Rj

L(y, u). 2

3. Global Minimization of Linearly Constrained Quadratic Functions

In this section we consider the linearly constrained quadratic problem

(QP′) min
x∈�′

φ′(x) =< Qx, x > + < c′, x >, (25)

where�′ = {x ∈ Rn : A′x 6 b′} is a bounded polyhedral set,Q ∈ Rn×n is a
symmetric matrix andA′ ∈ Rm×n, b′ ∈ Rm, c′ ∈ Rn, and< ·, · > denotes the
usual inner product onRn.

First of all, we use either the so-called Gauss’ method (diagonalization by com-
pletion of the squares) or the diagonalizing procedure of Rosen et al. [16]. It is used
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to obtain an equivalent problem with separable cost quadratic functions, and in this
way, we will be able to use the method described in the above section, since we
will explicitly compute the value functioǹ defined in (17).

Therefore, we can suppose that the quadratic problem to solve has the following
structure

(QP) min
y∈� φ(y) =< Dy, y > + < c, y >, (26)

where� = {y ∈ Rn : Ay 6 b} is a bounded polyhedral set;D ∈ Rn×n is a
diagonal matrix andA ∈ Rm×n; b ∈ Rm andc ∈ Rn.

On the other hand, from the compactness of the set�, we can suppose that we
know a rectangular setB = {y ∈ Rn : b 6 y 6 b̄} such that� ⊂ B; indeed if we
define

bi = min
y∈� yi b̄i = max

y∈�
yi for all i ∈ {1, . . . , n}, (27)

B turns out to be the rectangular set of minimum volume that contains�.
We continue by using the Branch and Bound method described in Section 2.

From now on, due to the separability of the quadratic cost function, we consider
finite covers3 = {Rj : j ∈ J } of B such thatRj is a rectangular set for all
j ∈ J . Branching refers to the partition of the feasible domain by bisection in
certain directions, and bounding refers to the determination of lower and upper
bounds for the global optimum value.

The Bounding.At the current iteration we have a finite rectangular cover3 = {Rj :
j ∈ J } of B. We solve the dual programs

γj = sup
u∈Rm+

`j(u) for all j ∈ J, (28)

where`j (u) = min
y∈Rj

L(y, u) andL(y, u) = φ(y)+ < u,Ay − b >.

It is easy to see that

`j (u) = − < u, b > +
n∑
i=1

min
yi∈[li ,Li ]

{diy2
i + zi(u)yi}, (29)

wherez(u) = c + AT u,D = diag(di) andRj =
n∏
i=1
[li , Li].

For obtaining upper bounds we systematically test the middle point of the rect-

angular setRj =
n∏
i=1
[li , Li], that is, if ȳj = 1

2(l + L) ∈ Rj verifiesAȳj − b 6 0,

then we set

α(3) = min{φ(ȳj ), α(3)} (30)
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On the other hand, while we solve the programs (28), it is necessary to de-
termine the value of̀ (u), that is, the pointy′ ∈ Rj such that̀ (u) = φ(y′)+
< u,Ay′ − b >, we then can test if thisy′ ∈ Rj is feasible or not.

REMARK . Of course, we could obtain a feasible pointy ∈ Rj (if there exists)
by solving the problem

(LP) min{h(y) : y ∈ Rj, y ∈ �} (31)

where the functionh : Rm → R is a linear (or piecewise linear) underestimation
of φ onRj . But, it introduces an additional computational cost.

The Branching.We take the setR̂ defined by the bounding, that is,R̂ verifies

γ̂ = min
j∈J

γj . We bisectR̂ on its largest face, that is, ifR̂ =
n∏
i=1
[li , Li], we set

io ∈ {1, . . . , n} such that

Lio − lio = max
i∈{1,... ,n}

(Li − li); (32)

we then define the new cover3′ of B by

3′ = 3 ∪ {R1, R2} \ {R̂ }, (33)

where

R1 = [lio ,
lio + Lio

2
] ×

n∏
i=1
i 6=io

[li , Li], R2 = [ lio + Lio
2

, Lio ] ×
n∏
i=1
i 6=io

[li , Li].

(34)

To end this section we establish a result showing that, first the above branching
procedure verifies the remark following Theorem 2.2; second, giving two ways to
leave out an elementRj of cover3 of setB.

PROPOSITION 3.1.Let3 = {Rj : j ∈ J } be a rectangular cover of the setB.

(i) If we suppose that the setR̂ =
n∏
i=1
[li , Li] ∈ 3 must be branched, then the set

Rk k ∈ {1,2} defined in (34) verifies the inequality

diam(Rk) 6
(4n− 3

4n

)1/2
diam(R̂ ). (35)

(ii) Every setRj ∈ 3 such thatγj > α(3) + ε may be left out since it does not
contain global solutions of problem(QP ).



AN ALGORITHM FOR GLOBAL MINIMIZATION 87

(iii) If there existko ∈ {1, . . . , m} such that the setRj =
n∏
i=1
[li , Li] ∈ 3 verifies

n∑
i=1

min{liakoi , Liakoi } > bko , (36)

whereako is theko-th row of matrixA andbko is theko-th component of vector
b ∈ Rm. Then, the setRj may be left out since it does not contain feasible
points of problem(QP ).

Proof. It is a simple exercise. 2

4. The Algorithm and the Computational Results

Based on the above theorical results, we now present the computational algorithm.

ALGORITHM . The elements of cover3 are stored (in a growing order with
respect to their lower bounds) in a two way-linked listL .
1. Initialization

1.1. We use either Gauss’ method or the diagonalizing procedure of Rosen et
al. [16] to obtain an equivalent problem with a separable quadratic cost
function.

1.2. We solve the 2nlinear programming problems

bi = min
y∈� yi, b̄i = max

y∈�
yi. (37)

1.3. We define

3 = {B} whereB =
n∏
i=1
[bi, b̄i],

α(3) = min
i∈{1,... ,n}

{φ(y
i
), φ(ȳi )} where y

i
, ȳi are (respectively) the

solutions of linear programs in (37),
γ = sup

u∈Rm+
`(u) with ` defined in (28),

L← {B}.
2. We bisect the first element (along its largest face) of listL , we obtain two

elementsR1 andR2 (defined in (34)).
3. For eachk ∈ {1,2}, we test ifRk contains feasible points (see (36)). If it is the

case we computeγ = sup
u∈Rm+

`(u), and the middle point̄yk of Rk.

If ȳk ∈ Rk is a feasible point then

α(3)← min{α(3), φ(ȳk)}. (38)
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4. We delete the first element of the listL and those elements ofL such that their
lower bound is greater thanα(3)+ ε.

5. For eachk ∈ {1,2}, if necessary, we insertRk in the listL .
6. If α(3) − ε is greater than the lower bound of the first element ofL then we

go to 2, otherwise we have an approximate solutiony∗ ∈ � of problem (QP)
within ε, that is,φ(y∗)− α 6 ε.

REMARK . The dual problems

γ = sup
u∈Rm+

min
y∈R L(y, u),

whereL is defined in (28), are not solved in an exact form. For searching an
underestimating ofγ we use the fact that̀ is a concave (continuous) piecewise

quadratic function whenR is a rectangular set, that is,R =
n∏
i=1
[li , Li]; andD is a

diagonal matrix. In fact, we recall that

`(u) = − < u, b > +
n∑
i=1

min
yi∈[li ,Li ]

{diy2
i + zi(u)yi},

wherez(u) = c + AT u andD = diag(di).
If di > 0 and li 6 zi (u)

2di
6 Li, we then have the equality

min
yi∈[li ,Li ]

{diy2
i + zi(u)yi} = −

(ci+ < u, ai >)2
4di

,

whereai ∈ Rm is thei-th column of matrixA. It is then a quadratic function on a
polyhedral domain inRm.

Otherwise, we have the equality

min
yi∈[li ,Li ]

{diy2
i + zi(u)yi} = min{dil2i + zi(u)li , diL2

i + zi(u)Li}.

It is then a piecewise linear function onRm.
Next, we make no more than 30 iterations with a Uzawa’s method. But since`

is a piecewise quadratic function, we use as ascent direction the variant of Polak
and Ribière. Finally, the line search is realized with a bisection method. For details
on these methods see Minoux [9], Part I, chapters 3 (p. 75), 4 (p. 110) and 6 (p.
253).

Computational Results

The computational results presented below were all obtained using a DEC ALPHA
3000/300L. The DEC ALPHA has a DECchip 21064 RISC-style microprocessor,
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Table I.

n=100 n=300 n=500 n=1000 n=2000 n=3000 n=4000

CPU time (secs.) 0.0 0.1 0.3 1.5 8.2 17.6 32.0

with a 256 KB secondary cache, a SIMM memory of 128 MB and a CPU speed of
100 Mhz.

TEST PROBLEM1

It is the following concave separable quadratic problem:

min

{
−

n∑
i=1

[
x2
i +

1

2
xi

]
: − 1.0 6 xi 6 1.0, i ∈ {1, . . . , n}

}
.

It is easy to see that this problem has 3n Karush-Kuhn-Tucker points, 2n local
minima points and only one global solution.

For every problems the number of iterations was 1 and the number of cost
function evaluations was 5.

Table 1 summarizes the computational results withε = 5 · 10−7.

TEST PROBLEM2

It is the following integer 0-1 linear problem:

max

{
n∑
i=1

ciyi :
n∑
i=1

yi 6 b, yi ∈ {0,1}, i ∈ {1, . . . , n}
}
,

whereci = 1.0 for all i ∈ {1, . . . , N}; ci = −1.0 for all i ∈ {N + 1, . . . , n}; and
b = max{q : q ∈ N, q 6 N/2.0}. It is easy to see that the number of solutions of
this problem is greater than 2b.

We solve the following concave separable quadratic problem:

−min

{ n∑
i=1

[θyi(1− yi)− ciyi] :
n∑
i=1

yi 6 b, 06 yi 6 1, i ∈ {1, . . . , n}
}
,

whereθ is a constant positive. It is not difficult to see that if we wish to obtain
one solution to distance less or equal thatε′ > 0 of the integer 0-1 solution, it is
sufficient thatθ verify

θ > ε

ε′(1− ε′)
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Table II.

n=1000 n=2000 n=3000

N time time time fn dual iter node

100 6.0 17.1 31.0 354 1057 75 76

200 11.5 31.1 51.5 755 2457 175 176

300 13.1 31.8 50.3 652 2100 150 151

400 22.5 56.1 90.6 1555 5257 375 376

500 21.1 52.8 75.2 1052 3500 250 251

600 25.2 62.2 90.1 1252 4200 300 301

700 39.0 84.4 149.0 10885 17631 1258 1259

800 44.5 107.7 168.6 12085 19844 1416 1417

900 37.3 93.6 123.1 1853 6300 450 451

1000 41.4 99.9 136.3 2052 7000 500 501

1500 —– 128.6 207.6 3053 10500 750 751

2000 —– 174.7 259.0 4055 14002 1000 1001

Note: time = CPU time (secs), fn = maximum number of cost function evalu-
ations, dual = maximum number of dual function evaluations, iter = maximum
number of iterations, node = maximum number of stored nodes.

whereε > 0 is the threshold for the approximated solution.
Table 2 summarizes the computational results withθ = 103 andε = 5 · 10−7.

TEST PROBLEM3

It is the following concave separable quadratic problem:

min

{
−

n∑
i=1

y2
i :

j∑
i=1

yi 6 j, j ∈ {1, . . . , n}, yi > 0, i ∈ {1, . . . , n}
}
.

This problem is taken from Strekalovskii [18]. In that paper the CPU time
reported to solve the above problem is 40 min for 100 variables.

It is important to note that the diameter of the feasible set and the norm of the
global solution are equals to the dimension of the problem.

Table 3 below summarizes the computational results withε = 5 · 10−7

TEST PROBLEM4

It is the nonconvex separable quadratic problem:

min
y∈�

{
− 1

2

k∑
i=1

λi(yi − ȳi )2 + 1

2

k+l∑
i=k+1

λi(yi − ȳi )2
}
,
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Table III.

n time fn dual iter node

100 0.3 26 46 1 1

200 3.8 80 107 2 2

300 7.7 63 84 2 2

400 12.5 57 71 1 1

500 30.1 71 102 3 2

600 55.9 100 133 4 2

700 33.0 28 55 1 1

800 74.8 78 93 1 1

900 77.8 50 70 1 1

1000 125.2 63 95 2 2

1500 346.4 87 103 1 1

2000 647.9 76 106 2 2

Note: See note Table 2.

where� = { y ∈ Rn : Ay 6 b, y > 0 }, n = k + l, A = (aji) ∈ Rm×n,
b ∈ Rm. The data aji ∈ [0,9], bj ∈ [0, n] and ȳi , λi ∈ [0,99] are randomly
generated integers. We solved 17 problems (5 for each dimension), the smallest of
dimension 60 (10 concave and 50 convex variables) and the largest of dimension
330 (30 concave and 300 convex variables). The average CPU time was 2.6 secs
for n=60, to 723.6 secs forn=170, problem.

The PGR column contains the CPU times (obtained using a Cray 1S supercom-
puter) given in Pardalos et al. [12] to solve problems of the same dimension and
data generated similarly.

Table 4 below summarizes the computational results withε = 5 · 10−3.

5. Concluding Remarks

In our approach, we note that the main computational effort required to obtain good
approximations of the global solution of the quadratic problem depends mainly on
our capacity to store the information, that is, on our capacity to store the cover
generated by the branching; and on our efficiency to calculate the dual function
values.

The techniques developed above can be extended to the solution of:
(1) 5.1 Large scale nonconvex quadratic problems of the form

min{< Qy, y > + < c, y > + < d, x >: (y, x) ∈ �},
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Table IV.

k l n min max aver fn dual iter node PGR

10 50 30 0.0 9.2 2.6 938 2570 49 4 54.6

10 50 20 2.2 89.4 47.1 24534 83217 1777 61 56.6

10 60 20 0.1 64.6 14.1 17738 61018 2594 51 154.0

10 60 30 0.9 67.4 15.5 16803 39431 1460 87 48.5

10 70 30 2.1 274.5 115.7 46545 158750 3556 139 80.5

10 80 40 0.2 21.5 7.1 2471 7204 132 4 77.8

10 100 50 0.1 19.3 6.6 1442 4696 93 4 89.5

20 40 20 0.0 66.0 21.7 16578 67439 2528 85 97.5

20 50 20 0.0 30.7 6.2 14623 27085 1330 27 305.5

20 60 30 0.0 215.6 98.6 32393 129571 2381 113 208.8

20 70 30 0.2 479.3 123.8 186805 171493 22818 554 199.0

40 80 40 0.1 273.1 86.4 27248 73525 4650 68 457.0

20 150 30 6.5 725.9 177.3 41625 154246 3358 31 325.0

20 150 50 0.5 2224.8 723.6 90718 312297 8361 175 436.0

30 150 50 0.4 1117.8 327.5 53096 143617 6166 59 1000.0

20 200 50 0.4 363.2 154.0 13381 38141 1096 16 178.0

30 300 50 9.6 1889.0 452.9 57902 108567 7393 77 1500.0

Note: k = number of concave variables, l = number of convex variables, m = number of constraints,
min = minimum CPU time (secs), max = maximum CPU time (secs), aver = average CPU time
(secs), fn = maximum number of cost function evaluations, dual = maximum number of dual function
evaluations, iter = maximum number of iterations, node = maximum number of stored nodes.

where� = {(y, x) ∈ Rn+k : Ay + Bx 6 b} is a bounded polyhedral set,
Q ∈ Rn×n is a symmetric matrix,y ∈ Rn andx ∈ Rk. Herek may be much
larger thann.

(2) 5.2 Integer 0-1 (or mixed) nonconvex quadratic problems of the form

min{< Qy, y > + < c, y >: y ∈ �, yi ∈ {0,1}, i ∈ I },
where� = {y ∈ Rn : Ay 6 b} is a bounded polyhedral set,Q ∈ Rn×n is a
symmetric matrix andI ⊂ {1, . . . , n}.
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